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The pairing condition itself implies that the structure 
factor of the observed reflection is zero. Therefore, we 
can conclude that the supposition of the previous section 
is false. No combination of symmetry elements can give 
rise to a pairing rule for an allowed reflection. 

Summary and concluding remarks 

In electron diffraction, it is difficult to use experimental 
intensities to solve crystal structures. This is because - 
unlike the case for X-rays - the intensity of a reflection 
does not depend only on the structure factor for that 
reflection but, through the complexities of dynamical 
diffraction, on many structure factors. 

However, there are cases where the dynamical- 
diffraction multiple-diffraction routes can be shown 
to contribute nothing to the diffracted intensity. 
Unfortunately, these dynamical extinctions occur only 
when the structure factor for the observed reflection is 
itself zero. 

Therefore, the idea that, by looking in specific cir- 
cumstances and at a specific orientation, we could find 
an experimental intensity that would depend only on the 
structure factor for the observed reflection turns out not 
to be fruitful. The student asked a good question but 
one with an unhappy answer. 

This conclusion should not be taken to mean that there 
are no methods of using electron diffraction intensities 
for crystal structure determination, only that the particu- 
lar method proposed does not work. There are several 

ways of determining structure factors from electron 
diffraction. These have been reviewed by Gjannes, Olsen 
& Matsuhata (1989) and Spence (1993). One of these 
methods in particular is related to the ideas of this 
paper: the Bristol group (Vincent & Exelby, 1994) has 
found situations where the intensities may be interpreted 
kinematically - although unfortunately only for high- 
order reflections. 

I thank Jon Gjonnes for helpful comments. This 
work and the Center for Microanalysis of Materials are 
both supported by grant DEFG02-91ER45439 from the 
Department of Energy. 
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Abstract 

The performance of an X-ray optical system often 
depends critically on the local angular divergence of 
the X-ray beam. For example, in systems for radiog- 
raphy, tomography and diffraction topography, the 
angular divergence of the incident beam at a point in 
the sample determines the limiting spatial resolution. 
In this paper, formulas are derived for the local 
divergence in the diffracted beam of the non- 
dispersive asymmetric reflection double-flat-crystal 
monochromator, illuminated by synchrotron or 

characteristic radiation. The formulas are analyzed 
to determine the general behavior of the local 
divergence as a function of the asymmetry factors of 
the crystal reflections. For synchrotron radiation, 
one surprising conclusion is that the local divergence 
of the magnifying monochromator is always greater 
than that of the symmetric monochromator, signifi- 
cantly so for even moderate magnification factors. 
This result, which contradicts a claim in the litera- 
ture, is attributed to a prismatic property of asym- 
metric reflection that has not previously been 
identified. 
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I. Introduction 

A basic optical quantity that characterizes an X-ray 
beam is its local angular divergence, i.e. angular 
divergence at a given point. When the point is illumi- 
nated by a crystal monochromator, the local 
divergence will be determined by the characteristics 
of both the monochromator and the X-ray source. If 
only symmetric reflection is used, the effect of the 
monochromator is simple because symmetric reflec- 
tion is formally equivalent to specular reflection for 
rays within the rocking-curve width; however, if 
asymmetric reflection is used, the effect is complex 
because asymmetric reflection can collimate or dis- 
perse rays within the rocking-curve width. In this 
paper, the non-dispersive asymmetric reflection 
double-flat-crystal monochromator is studied. A 
formula for the local divergence, involving the 
monochromator and source parameters, is derived 
and analyzed. 

Some X-ray techniques are sensitive to the local 
divergence of the incident beam and benefit by its 
reduction. Prime examples are the projection 
imaging techniques of radiography, tomography and 
diffraction topography. Ideally, the local divergence 
of the incident beam is zero so that an object point is 
projected to a single image point. In practice, the 
local divergence is nonzero so that an object point is 
projected over an image area. Thus, the limiting 
spatial resolution of these imaging techniques is pro- 
portional to the local divergence of the incident 
beam at the object. Optimizing the spatial resolu- 
tion clearly requires understanding of the local 
divergence. 

Kuriyama, Boettinger & Burdette (1980) advocate 
a magnifying asymmetric reflection monochromator 
for radiography with characteristic radiation and 
Kuriyama, Steiner & Dobbyn (1989) advocate the 
same monochromator for diffraction topography 
with synchrotron radiation. In these two cases, they 
claim that the angular divergence of the mono- 
chromator's reflected beam is proportional to m-1/2 
and m-1, respectively, where m is the magnification 
factor of the monochromator, and thereby conclude 
that increasing m improves collimation. However, 
they treat superficially the polychromaticity of the 
beam, so it is necessary to study the collimating 
effect of this monochromator more thoroughly. 

Limited results concerning the local divergence 
may be obtained by elementary arguments, as fol- 
lows. For simplicity, only the single-crystal mono- 
chromator is considered, although the treatment 
could easily be extended to the non-dispersive 
double-crystal monochromator. The monochro- 
mator is set at the Bragg angle 0B for the wave- 
length As using a reflection of absolute asymmetry 
factor b = s i n ( 0 8 -  a)/sin (0~ + a), where a is the 

angle between the crystal surface and reflecting 
atomic planes. Conventionally, b denotes the (signed) 
asymmetry factor, which is positive for Laue trans- 
mission and negative for Bragg reflection. However, 
since only the latter is treated in this paper, for 
convenience b is defined as the absolute value of the 
asymmetry factor. The rocking-curve width of the 
reflection is b-l/2J'~sym, where ~'-~sym is the rocking- 
curve width for symmetric reflection (b = 1) from the 
same atomic planes. The reflected beam is magnified 
by the factor b-~ so magnifying and demagnifying 
asymmetric reflection correspond to b < 1 and b > l, 
respectively. The spectral width of the source is AA 
and its angular divergence is O~rc. For synchrotron 
radiation, AA is large and O~,~ is small; for charac- 
teristic radiation, the reverse holds. When the spec- 
tral width is small (AA/As< < 1), only incident rays 
in an angular range of b- l/2f'~sy m "[- (AA/AB)tanOB can 
satisfy the Bragg condition to within the rocking- 
curve width and therefore be reflected; all reflected 
rays are limited to an angular divergence of bl/Z~Qsy m 
+ (AA/AB)tan0B. While the local divergence at an 
arbitrary point P in the reflected beam, denoted Op, 
is most generally a solid angle, it is convenient to 
consider only those rays in the plane of diffraction of 
the monochromator, making it a planar angle. 

In the absence of a monochromator, Op= min 
Osrc, Oe.src) , where Op,sr~ is the angle at P subtended 
by the source. This may be extended to the sym- 
metric reflection monochromator by constructing a 
point P', which is the mirror image of P through the 
crystal surface, as shown in Fig. 1. If symmetric 
reflection were equivalent to specular reflection for 
all rays, then Op would equal min (O~rc, Op'~r~). But 
they are only equivalent for rays within the rocking- 
curve width, so 

Op= min[Osrc, Oe, s~, J'~sym -~- (Aa/A~)tan08]. 
Unfortunately, this result cannot be extended to 
the asymmetric reflection monochromator because 
asymmetric reflection is much more complex than 
specular reflection. 

[ 
src 

•P'.src 

1 

Fig. 1. Source-size contribution to local angular divergence for 
symmetric reflection. 
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For the asymmetric reflection monochromator, 
weaker results may be obtained in the form of 
inequalities that are useful in limiting cases. Clearly 
O p  --< bl/2~Qsy m a t- (Aa/as)tanOs,  since all reflected 
rays, not only those intersecting at P, are confined to 
this angular range. Thus, in the limit of infinite 
magnification (b = 0) and ideal monochromaticity 
(AA = 0), the local divergence vanishes independently 
of source size. Another inequality may be obtained 
by regarding the crystal surface as a virtual source of 
limited size, which is viewed at a takeoff angle from 
P. Clearly Oe--- OP, src', where OP,sr c, is the angle at P 
subtended by the virtual source. In the limit of 
infinite demagnification, the takeoff angle vanishes 
so the local divergence vanishes independently of the 
spectral width. 

Derivation of the local divergence of the non- 
dispersive asymmetric reflection double-flat-crystal 
monochromator requires a complete mathematical 
description of the ray trajectories from the source 
through the monochromator to the observation 
point. In §2, these trajectories are obtained by the 
X-ray optical method of Matsushita & Kaminaga 
(1990) after convenient notation has been intro- 
duced. In §3, the local divergence is derived and 
analyzed. 

2. Ray trajectories 
To trace rays through the optical system, several 
coordinate systems are established, with origin O0 at 
the center of the source, Ol and 02 at the center of 
the reflecting surface of the first and second crystal, 
respectively, and 03 at an observation point centered 
in the reflected beam of the second crystal, as shown 
in Fig. 2. All the origins lie in the plane of diffraction 
of the monochromator, as do the coordinate systems, 
which are two dimensional since only rays in this 
plane are treated. The central ray, of wavelength As, 
connects the four origins. At O~ and 02, the central 
ray bends by 20B and - 2 0 s ,  respectively, ignoring 
index-of-refraction corrections. Separate coordinate 
systems are established at O~ for the incident and 

,2, 

^ 

7"11 

I 03 

~3 

Z3  

Fig. 2. Coordinate systems for a double-crystal monochromator. 

reflected beams, referred to by the subscripts il and 
rl, respectively. The positive zi~ and zr~ axes are 
directed from O0 to O~ and O~ to 02, respectively, 
i.e. along the incident and reflected central rays. The 
positive Yil and Yrl axes are directed inside and 
outside the first crystal, respectively. In the same 
manner, two coordinate systems are established at 
02, referred to by the subscripts i2 and r2. Note that 
the rl and i2 coordinate systems are parallel, i.e. Yrl 
= ~,~ and f~r~ = ~i2- Finally, coordinate systems are 
established at Oo and 03, parallel to the il and r2 
coordinate systems, respectively, referred to by the 
subscripts 0 and 3. 

Most generally, a ray is defined by a wave vector k 
and some point r on the ray; however, since all rays 
of interest lie near the central ray, it is convenient to 
use ( k -  kB)/[kB[ instead of k, where kB is the wave 
vector of the central ray. (Technically, one of the 
above subscripts should be applied to k and kB to 
specify a section of the optical system; however, since 
any subscript potentially applies, it is omitted for 
now.) The y and z components of ( k -  kB)/]ks] are 
denoted by y'  and z; respectively. Since ks is directed 
along i, y '  is the angle between k and ks and z ' =  
( a s -  ,~)/As, where A is the wavelength of the ray. 
Note that z' differs in sign from the corresponding 
variable used by Matsushita & Kaminaga (1980), 
which they denote by AA/A0. The y and z com- 
ponents of r are denoted by y and z. However, it is 
convenient to chose r as the point on the ray for 
which z = 0 .  Thus, a ray is represented by the 

t T column vector (y,y ,z ) . 
Ray propagation and reflection are described by 

transformations of ray coordinates between adjacent 
coordinate systems. Since the transformations are 
linear, they are represented by matrices. The propa- 
gation matrix between Om and O,, where n = m + 1, 

Znm = 

1 Znm 

0 1 

0 0 

0 

0 , 

1 
where Znm is the distance between the origins. An 
example of this transformation is (Yil, Yh,  Z~l) r =  

t t T Z~o(Yo, Yo, Zo) .  The reflection matrix for the nth 
crystal is 

bn-I 0 0 / 

B,, = 0 bn (b~- 1)tan 0B J, 
0 0 1 

where b~ is the absolute asymmetry factor of 
the crystal. An example of this transformation is 

e e (Yrl, Yrl, Zrl) T :  Bl(yil,  Yil, zh)  y. Matrix element 
(B~)2,3 differs in sign from that in (3) of Matsushita & 
Kaminaga (1980) because z' differs in sign from their 
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corresponding variable, as noted above. The fol- 
lowing transformations will be referred to later: 

(Yil, Y~I, Z~I) T =  Zlo  (Yo, Y'o, Z'o) T, (la) 

(Yn, Y;2, z~-_) r =  Z21BlZlo (Yo, Y;, z;) r, (lb) 

(Y3, /3 ,  Zt3) T =  Z32B2221BlZlo (Yo, Y'o, 7"/0) T" (lc) 

Physical interpretation of the equation y) = by'g + 
(b - 1 )  tan 0Bz~, contained in the reflection trans- 
formation, reveals the complexity of asymmetric 
reflection. For a monochromatic divergent incident 
beam, y~ = bye, so the beam is collimated when b < 1 
and dispersed when b > 1. This well known property 
led Kuriyama, Boettinger & Burdette (1980) and 
Kuriyama, Steiner & Dobbyn (1989) to advocate the 
magnifying asymmetric reflection monochromator  
for primary-beam collimation. For a polychromatic 
parallel incident beam, Y'r = ( b -  1)tan0Bz'~, so the 
beam is dispersed if b m 1. This prismatic property, 
not previously identified, is essential for understand- 
ing asymmetric reflection. Indeed, for the magnifying 
asymmetric reflection monochromator,  this disper- 
sive effect counteracts the collimation effect. 

Mathematical approximation of the rocking 
curves and source (spatial, angular and spectral) 
distribution is required to obtain a simple formula 
for the local divergence. If the angular distribution of 
intensity at 03 were strictly localized, meaning that it 
vanished everywhere outside some interval, then the 
local divergence would be conveniently defined as the 
width of the smallest such interval. Unfortunately, in 
practice, the distribution is not strictly localized but 
has long weak tails, owing to corresponding tails in 
the rocking curves and perhaps source distribution. 
Although the rocking curves are not strictly local- 
ized, they are nearly localized, meaning that almost 
all the area under each curve is confined to an 
interval not much larger than the full width at 
half-maximum (FWHM). Likewise, the source distri- 
bution is nearly localized, when not strictly localized. 
In the mathematical model below, these nearly local- 
ized functions have been approximated by strictly 
localized ones by cutting off their tails at the half- 
maximum points. While these points are somewhat 
arbitrary, another reasonable pair would only 
moderately alter the numerical value of the local 
di,:ergence but would not change its general behavior 
as a function of the asymmetry factors and other 
parameters. As a result of the approximations, the 
angular distribution of intensity at 03 is strictly 
localized and the local divergence is easily computed 
without the distribution itself having to be com- 
puted. Furthermore, the local divergence is indepen- 
dent of the details of the rocking curves and source 
distribution, depending only on their FWHM. 

If the ray (Yo, y'o, Z'o) r physically exists, it must 
satisfy the following constraints imposed by the 

source distribution: 

lyol-< Yo/2, (2a) 

lY ,I < Y'o/2, (2b) 
leVI- Z'o/2, (2c) 

where Y0 is the source's spatial FWHM,  Y~ is its 
angular FWHM and Z~ is its spectral F W H M  
divided by the wavelength of the central ray (AA/A~). 
If the ray passes through the monochromator,  it 
must satisfy two more constraints. First, it must lie 
within the rocking-curve widths of both crystals. 
Since y',., + tan OBz~.,, is the angular deviation from 
the Bragg condition for a ray incident on the nth 
crystal, lY},, + tan OBz},,[ <- b,,-~2y2sym/2 (n = 1, 2), 
where ~(~sym is the F W H M  of the rocking curve for 
symmetric reflection. With (la) and (lb), these con- 
straints are equivalent to 

lY; + tan 08Z'ol-- ,0/2, (3) 

where g2 - b~- 1/2 min [1, (bib2)- l/2]g2sym is the effect- 
ive rocking-curve width of the monochromator.  
Second, the ray must strike both crystal surfaces, 
which have finite length, so 

]Yinl <- (L,,/Z)sin 0,,, n = 1, 2, (4) 

where L, is the length of the nth crystal and 0,, = 0e 
- tan-1 [tan 0B(1 - b,)/(1 + b,)] is the glancing angle 
of the beam incident on the crystal. This constraint 
could also be expressed in terms of Y0, )'~ and z~ 
using (la) and (lb). Finally, if the ray passes through 
O3, where Y3 = 0, then, according to (1 c), 

0 = Y0 + [-710 -~- b21z21 + (blb2)2z321F~) 
4 

+ [b~(b, - 1)z21 + blb2(b~b2 - 1)z32]tan O~z'o. (5) 

In conclusion, the rays that satisfy constraints (2)-(5) 
are exactly those that pass through 03. 

In three special cases, the double-crystal mono- 
chromator is equivalent, within the mathematical 
model, to a single-crystal monochromator  of abso- 
lute asymmetry factor b, Bragg angle 0B, rocking- 
curve width ,O, source-to-crystal distance Arc and 
crystal-to-observation-point distance zt,. First, if bl 
___ 1 and b2 = 1, then the second crystal simply specu- 
larly reflects all incident rays so the two crystals are 
equivalent to one with b = b~, Zsr c = ZID and zp = z2~ 
+ z n .  Second, if b l = l  and b2--1,  then the first 
crystal specularly reflects all rays that the second is 
capable of reflecting so the two crystals are equiva- 
lent to one with b = b2, Zsrc = Zt0 + z21 and zp = z32. 
These two cases show that every single-crystal mono- 
chromator is equivalent to some double-crystal 
monochromator  so it is unnecessary to treat the 
former separately. Third, if z2~ is negligible compared 
to zlo and z32, then Z2t may be approximated by the 
identity matrix, so B2Z2~B~ = B2B~ = B(blb2), where 
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B(blb2) is the reflection matrix with absolute asym- 
metry factor b~b2. Thus, the two crystals are equiva- 
lent to one with b = b~b2, Zsrc = Z~0 and ze = z32. 

3. Local divergence 

At 03, according to (lc), 

/ 3  = blb2Y'o + (blb2 - 1)tan OaZ'o. (6) 

As the ray (Yo, Y'o, Z'o) r varies throughout the region 
defined by constraints (2)-(5), y~ reaches a maximum 
value Y'3/2 for some ray (Y0*, '* Yo , Z'o*) r. By symme- 
try, the minimum value of y~ in the region is - Y'3/2 
so Y~ is the angular divergence at 03. The problem 
of finding Y3 and (Yo*, '* ' Yo , Z'o*) r is an example of 
the well known linear-programming problem. At 
(Yo*, '* Yo,  z~*) r, two of the inequality constraints 
(2)-(4) must be satisfied as equalities and are said 
to be active. These active constraints effectively 
determine the solution. 

For different source and monochromator charac- 
teristics, different constraints may be active. How- 
ever, in practice two cases are normally encountered. 
For synchrotron radiation, the local divergence is 
usually determined by the source size and the effec- 
tive rocking-curve width so constraints (2a) and (3) 
are active. For characteristic radiation from a con- 
ventional tube, the local divergence is usually 
determined by the spectral width and the effective 
rocking-curve width so constraints (2c) and (3) are 
active. Characteristic radiation from a microfocus 
tube normally belongs to one of these cases. While 
only these two cases are treated below, additional 
ones could be treated by the same method. 

In both cases, a formula for Y~ is given that was 
derived by re-expressing y~ [see (6)] in terms of the 
active constrained functions (y~ + tan O~z'o and Yo or 
z~), using (5) as necessary to eliminate extraneous 
variables. In addition, formulas for evaluating the 
inactive constrained functions at (Yo*, '* Yo , Z'o*) r are 
given for checking consistency. All inactive con- 
straints should be satisfied. If an inactive constraint 
is violated, then the case does not apply and another 
case should be tried in which the violated constraint 
is active. Finally, the general behavior of Y~ with 
respect to the asymmetry factors is discussed and 
specific numerical examples are presented. Note that 
purely numerical results could have been more easily 
obtained by standard methods of linear program- 
ming, which systematically and efficiently consider as 
many cases as necessary to obtain the solution, or by 
ray-tracing programs; however, neither of these 
approaches is conducive to a general understanding 
of the influence of the asymmetry factors and other 
parameters on the local divergence. Of course, the 
present approach only yields the approximate width 
of the angular distribution of intensity at 03. To 

obtain the distribution itself, a ray-tracing program 
is required to incorporate the details of the rocking 
curves and source distribution. 

To facilitate discussion, the following abbreviated 
terminology is introduced to distinguish various 
monochromators according to b~ and b2. Symmetric 
(monochromator) refers to bl = b2 = 1 and asym- 
metric to all other cases. Quasisymmetric refers to 
b~b2 = 1. Finally, magnifying and demagnifying refer 
to bib2 < 1 and b~bz > 1, respectively, and strictly 
magnifying and strictly demagnifying refer to b~ < 1 
and b2 < 1 and b~ > 1 and b2 > 1, respectively. 

3.1. Synchrotron radiation 

In this case, the local divergence and inactive 
constraints are 

Y'3 = ( Yo + [N[F2)/D, (7a) 

where 

and 

N - (1 - blbz)zlo + b12(1 - b2)z2j 

D = _71o -'{- blZ21 + bib2z32; 
[Yo - sgn (N)[(1 - bl)z21 

+ b2(1 - b,b2)za2]b,,Ol/D <- Y'o, (7b) 

where sgn (N) - N/[N[ if N~0 ;  

I Yo + sgn (N)[zlo + b,2z21 

+ (blb2)2z32]f2[/D <_ tan OsZ'o; (7c) 

bll(z21 + baza2)Yo + sgn (N)[(1 - bl)z21 

+ b2(1 - bzb2)z32]Z~o~/D <- L~ sin 0;~; (7d) 

b2z32(Yo + [A~f2)/D <_ L2 sin 0,~. (7e) 

If N = 0, sgn (N) may be fixed at any value from - 1 
to 1 in order to satisfy constraints (7b)-(7d). 

Some numerical results of (7a), for various bl and 
b2 with all other parameters fixed, are listed in Table 
1, in order of increasing Y~. The values of the fixed 
parameters, also listed in Table 1, apply to the 
monochromator on beamline X23A3 of the National 
Institute of Standards and Technology, at the 
National Synchrotron Light Source, when set for As 
= 1.54,At using 111 reflections from silicon crystals. 
The values of Yo and Y~ refer to the source distribu- 
tion in the plane of diffraction, which is perpendicu- 
lar to the electron orbital plane. Since Z~ is 
effectively infinite, it is not listed. Of course, for the 
given b~ and b2, constraints (7b)-(7e) are satisfied. 
The values of bl and b2 were selected to illustrate 
various points in the following discussion. 

According to (7a), both the source size and the 
effective rocking-curve width contribute to the local 
divergence. However, since the latter contribution 
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Table 1. Data for the synchrotron-radiation case 

Y0 0.025 cm Lj 5.0 cm 
Y~ 46.0" L2 5.0 cm 
On 14.22 ° z~0 1705 cm 
/2sy,-. 7.0" z21 52 cm 

z32 259 cm 

bt b2 bib2 Y'3 (") 
22.891 0.437 10.000 0.940 

1.000 1.000 1.000 2.558 
0.100 10.000 1.000 2.671 
0.316 3.162 1.000 2.674 

10.000 1.000 10.000 3.302 
0.100 9.000 0.900 4.548 
3.162 3.162 ! 0.000 5.754 
1.000 0.100 0. I00 9.101 
1.000 10.000 10.000 9.239 
0.316 0.316 0.100 13.908 
0.100 1.000 0.100 22.536 

includes the factor ]N], it vanishes when N = 0. In 
particular, it vanishes for the symmetric mono- 
chromator, implying that the rocking-curve-width 
contribution is purely an asymmetric reflection 
effect. This contribution can also vanish for the 
asymmetric monochromator, thereby yielding a 
small local divergence. Starting at the point (1, 1) in 
the bib2 plane and following the curve N(bl, b2)= 0 
in the direction of increasing b~, both b~ and bib2 
monotonically increase to infinity so Y~ mono- 
tonically decreases to zero. Thus, the demagnifying 
monochromator can yield a smaller local divergence 
than the symmetric monochromator. Of course, this 
is expected from the elementary argument in §1. 
However, the demagnifying monochromator does 
not necessarily yield a smaller local divergence if 
N(b~, b2)¢0. For example, in Table 1, compare 
Y~(1, 1) to the four Y'3(bl, b2) for which blb2 = 10, 
noting that N(22.891, 0.437) = 0. Another example is 
the demagnifying single-crystal monochromator. As 
b increases from 1, (7a) implies that Y~(1, b) mono- 
tonically decreases to zero if f~sym -~ (ZP/Zsrc)Yo/(Zsrc + 
z~,); if not, Y~(1, b) initially increases before finally 
decreasing to zero. The latter is the case in Table l; 
note that Y~(1, 10) > Y~(1,1). 

In the region 0-- b~ -- 1 and 0-< b~b2 <- 1, which 
includes all strictly magnifying monochromators but 
not all magnifying ones, Y'a(b~, b2) is minimized at 
(1, 1), since [N[ is minimized and D is maximized 
there. Thus, the local divergence of a magnifying 
monochromator in this region is always greater than 
that of the symmetric monochromator. For example, 
in Table 1, compare Y~(1, l) to the three Y'a(b~, b2) 
for which b~b2 = 0.1. Note that Y'3(b~, bE) can be 
much larger than Y~ (l, 1). Since, as shown in §2, 
every single-crystal magnifying monochromator is 
equivalent to a monochromator in this region, the 
local divergence of any single-crystal magnifying 
monochromator is greater than that of the symmetric 
monochromator. 

In the complementary region b~-- 1 and 0-< bib2 
_< 1, which contains the remaining magnifying 
monochromators, (7a) implies that Y'a(b~, b2) is still 
minimized at (1, 1) if Yo/(Zlo + z21 + z23) - S2sym, as 
in Table I. In any case, Y'a(b~, b2) monotonically 
decreases as b2 increases at least until N vanishes, 
since IN] monotonically decreases and D monotoni- 
cally increases. But when b~ _> 1, N only vanishes for 
b~b2- I. Thus, the local divergence of a magnifying 
monochromator in this region is always greater than 
that of the quasisymmetric monochromator with the 
same bl. 

The results from these two regions imply that the 
local divergence of any magnifying monochromator 
is greater than that of the symmetric monochromator 
or the quasisymmetric monochromator with the 
same b~. Thus, the magnifying monochromator has 
no special collimating effect for synchrotron radia- 
tion, in contrast to monochromatic radiation. 
Clearly, the prismatic effect of asymmetric reflection 
dominates the collimating effect. 

For the quasisymmetric monochromator with 
bl -- 1, if Z 2 1  is sufficiently small, then D (b~, b l -  1) .... 
D(1, 1) and 11~f'2=b~/Z(1-bl)Z2112sym=O, so 
Y'3(b~, b~-1) = Y~(1, 1). Although the magnifying first 
crystal would increase the local divergence acting 
alone, the demagnifying second crystal almost com- 
pletely cancels the increase. Since z2~ is almost negli- 
gible, this monochromator is nearly equivalent, as 
shown in §2, to the single-crystal monochromator 
with b = b~b? ~= 1 and rocking-curve width /2= 
bi-I/2f~sym, i.e. to the symmetric monochromator 
whose rocking-curve width is enhanced by the factor 
b? ~/2. Thus, this monochromator delivers a reflected 
beam b~ -~/2 times more intense than that of the 
symmetric monochromator, ignoring reflectivity 
losses owing to absorption, with negligible increase 
in local divergence. Kohra, Ando, Matsushita & 
Hashizume (1978) previously noted the enhanced 
rocking-curve width of this monochromator. 
Although z2~ may be negligible when b2 = b~ ~, it 
is not necessarily so when b2 deviates slightly from 
this value. For example, in Table 1, compare 
Y'3(b~, b2) with b~b2 = 1 and bib2 = 0.9. Note that a 
10% change in b2 produces an 80% increase in Y~. 

3.2 Characteristic radiation 

In this case, the local divergence and inactive 
constraints are 

t t Y3 = blb2f2 + tan OnZo, (8a) 

[Zto + bl2z21 + (blb2)Zz32]f2 

+ (Zlo + b~z2~ + b~b2z32)tan 08Z'o <- Yo, (8b) 

S2 + tan OBZ'o <- Y'o, (8c) 
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bl[(Zzl + b22zz3)bl~2 

+ (Zzl + b2z32) tan OsZ'o] <- Llsin0il, (8d) 

b2z32(blb2~2 + tan OsZ'o) <- LzsinOa. (8e) 

According to (8a), Y~ is a non-decreasing function 
of bl and b2, with an absolute minimum of tan OsZ'o 
at b x = b2 = 0. Thus, in this case, the local divergence 
of the magnifying monochromator is less than that 
of all others, and less than that of the symmetric 
monochromator by as much as Osym. However, in 
practice, tan OsZ'o is much greater than ~sym SO the 
impact of the magnifying monochromator is small. 
For Cu Ka radiation, Z~ = 0.0029, where the spec- 
tral width is taken as the separation of the most 
distant half-maximum points of Kal and Ka2. With 
~sym and Os taken from Table 1, f2sym/(tan OsZ'o) = 
0.05, so only a 5% reduction in the local divergence 
is possible. 

Finally, for each example in Table 1, the left side 
of constraint (7c) is less than 0.0029. Thus, if the 
lengths Y0, Zlo, Z2I and z32 in Table 1 were reduced by 
the same factor, e.g. 10, in order to represent a 
monochromator with a microfocus tube, then the 
'synchrotron-radiation' case would apply. 

The previous results may be used to compute the 
spatial resolution of the Berg-Barrett method of 
diffraction topography by considering the specimen 
as a single-crystal monochromator. In this method, a 
highly magnifying asymmetric reflection is used, 
preferably with 20s near 90 °. The film is placed 
parallel to the incident beam, making an angle 0i 
with the specimen surface and touching it at an edge. 
This arrangement minimizes the distance zp from a 
point on the specimen to its image on the film. If d is 
the distance from the specimen point to the line of 
intersection of the specimen surface and film, then ze 
= dsinO/sin2OB=bd. For a large source size, the 
spatial resolution, defined as zeY'3, is bd(bl/Z~-2sym + 
tan OBZ'o), from (8a), while for a small source size it 
is bd[Yo + (1 - b)zsrcb-l/Zf2sym]/(Zsrc + Zp)'--" d(b Yo/zsrc 
+ bl/2g'2sym) from (7a). In both cases, the resolution 
improves as b decreases; in the second case, the 
improvement occurs despite increasing Y~, owing to 
a more strongly decreasing zp. Thus, the Berg- 
Barrett method is still advantageous after the local 
divergence is considered. 

4. Summary 

Ray trajectories for the non-dispersive asymmetric 
reflection double-flat-crystal monochromator, illu- 
minated by an arbitrary X-ray source, are obtained 
by the X-ray optical method of Matsushita & 
Kaminaga (1980). The particular trajectory that 
determines the angular divergence at an observation 
point, centered in the reflected beam for convenience, 
is shown to be the solution of a linear-programming 
problem. This problem is solved for the two most 
practical cases, synchrotron and characteristic radia- 
tion, yielding formulas for the local divergence in 
terms of the monochromator and source parameters. 
These formulas are analyzed to determine the general 
behavior of the local divergence as a function of the 
asymmetry factors. 

In the case of synchrotron radiation, the strictly 
magnifying monochromator always has greater local 
divergence than the symmetric one, a situation oppo- 
site that for ideally monochromatic radiation. This 
reversal is attributed to a prismatic property of 
asymmetric reflection. The intensity-enhancing quasi- 
symmetric monochromator has only slightly greater 
local divergence than the symmetric one. Finally, the 
demagnifying monochromator can have significantly 
less or greater local divergence than the symmetric 
one, depending on the asymmetry factors. 

In the case of characteristic radiation from a con- 
ventional X-ray tube, the local divergence of the 
symmetric monochromator is always slightly greater 
than the magnifying one and always less than the 
demagnifying one. A microfocus tube may come 
under this case or the previous one, depending on the 
spot size. 
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